Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 105: 813-823, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29913410

RESUMO

ß-Amyloid peptide (Aß) is a potent neurotoxic protein associated with Alzheimer's disease (AD) which causes oxidative damage to neurons. Incensole acetate (IA) is a major constituent of Boswellia carterii resin, which has anti-inflammatory and protective properties against damage of a large verity of neural subtypes. However, this neuroprotective effect was not studied on human olfactory bulb neural stem cells (hOBNSCs). Herein, we evaluated this effect and studied the underlying mechanisms. Exposure to Aß25-35 (5 and 10 µM for 24 h) inhibited proliferation (revealed by downregulation of Nestin and Sox2 gene expression), and induced differentiation (marked by increased expression of the immature neuronal marker Map2 and the astrocyte marker Gfap) of hOBNSCs. However, pre-treatment with IA (100 µM for 4 h) stimulated proliferation and differentiation of neuronal, rather than astrocyte, markers. Moreover, IA pretreatment significantly decreased the Aß25-35-induced viability loss, apoptotic rate (revealed by decreased caspase 3 activity and protein expression, downregulated expression of Bax, caspase 8, cyto c, caspase3, and upregulated expression of Bcl2 mRNAs and proteins, in addition to elevated mitochondrial membrane potential and lowered intracellular Ca+2). IA reduced Aß-mediated ROS production (revealed by decreased intracellular ROS and MDA level, and increased SOD, CAT, and GPX contents), and inhibited Aß-induced inflammation (marked by down-regulated expression of IL1b, TNFa, NfKb, and Cox2 genes). IA also significantly upregulated mRNA and protein expression of Erk1/2 and Nrf2. Notably, IA increased the antioxidant enzyme heme oxygenase-1 (HO-1) expression and this effect was reversed by HO-1 inhibitor zinc protoporphyrin (ZnPP) leading to reduction of the neuroprotective effect of IA against Aß-induced neurotoxicity. These findings clearly show the ability of IA to initiate proliferation and differentiation of neuronal progenitors in hOBNSCs and induce HO-1 expression, thereby protecting the hOBNSCs cells from Aß25-35-induced oxidative cell death. Thus, IA may be applicable as a potential preventive agent for AD by its effect on hOBNSCs and could also be used as an adjuvant to hOBNSCs in cellular therapy of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...